
Advances in Computer Science and Information Technology (ACSIT)
Print ISSN: 2393-9907; Online ISSN: 2393-9915; Volume 2, Number 9; April-June, 2015 pp. 25-28
© Krishi Sanskriti Publications
http://www.krishisanskriti.org/acsit.html

Process Migration in Cloud Computing
Pankajdeep Kaur1 and Anita Rani2

1CSE Department GNDU, RC, JALANDHAR
2M.TECH CSE(2nd SEM) GNDU, RC, JALANDHAR

E-mail: 1pankajdeepkaur@gmail.com, 2anitasaroay@yahoo.in

Abstract—Cloud computing is the delivery of computing services
over the internet. Cloud services allow individuals and other
businesses organization to use data that are managed by third parties
or another person at remote locations. In cloud computing, Process
migration is a technique in which an active process is moved from
one machine to another of possibly different architecture. Process
migration is used to load sharing among the pool of processors and
also improve the communication performance, reduced the cost by
bringing the processes closer together. Process migration needs to
capture the process’s current state of execution and recovering it on
the destination machine in a manner understandable to it. This paper
includes the mechanism of process state capture and state recovery.

Keywords: Process Migration, Initiation, State Capturing, Recovery.

1. INTRODUCTION

Process Migration is a technique in which an active process is
moved from one machine to another of possibly different
architecture. Therefore it is necessary to capture the process’s
current state of execution and recovering it on the destination
machine in a manner understandable to it. Process migration is
used to load sharing among the pool of processors and also
improve the communication performance, reduced the cost by
bringing the processes closer together. This paper describes
process capture and recovery of the internal state of process.

Further this paper highlights major migration issues include:

1) The mechanism of process state capture and recovery.

2) The initiation of the process state capture.

Process state capture in distributed computing systems cannot
simplify the process state capture, when the request of capture
is received. The process state can be capture and initiated only
at certain points –

1) When different instances of computation of different
architecture’s points are equal – so that the process can be
again started from the same point where it is halt.

2) When the request for capture is received, then the state
capture is initiated at the next point. At the same time, the
normal execution of process should be ensured.

A novel approach is used to process state capture and
recovery, in which the state capture and recovery is

maintained. When high performance computing applications
are used, the performance is achieved by the elimination of
polling within critical loops and it should be significant. This
solution is also capable for effectively enabling all points of
equivalence that are present in a computation if there is
minimal latency. In a polling approach, to get this minimal
latency, at all potential points poll- points are to be placed, in
which, the performance overhead is incurred during normal
execution of the process. One of the main features of this
approach is automatic transformation of the process’s program
code to state capture and recovery functionality that is
uncooperative. This modification is performed at the platform-
independent intermediate level of code representation but it
preserves the original program code. The main properties of
this approach are portability, ease of use, flexibility and
application-specific requirements.

A mechanism that solving the process state capture and
recovery problem will generate a checkpoint for an active
process. This contains a complete description of that process’s
state and point in execution. It also supports later use of that
checkpoint to restart a process, possibly on different type of
computer from which the original checkpoint was created. [1]

Fig. 1: Basic Operation of State Capture[1]

 Fig1 depicts the basic operation of a heterogeneous state
capture and recovery mechanism. The basic operation of state
capture is to recover the state of process at destination using
the checkpoint .Checkpoint is depicts the basic operation of a

Pankajdeep Kaur and Anita Rani

Advances in Computer Science and Information Technology (ACSIT)
Print ISSN: 2393-9907; Online ISSN: 2393-9915; Volume 2, Number 9; April-June, 2015

26

heterogeneous state capture and recovery mechanism
contained the information of various processes and also helps
to recover the states of process at restart nodes when the
process migration is going to be implement. But it is not easy
to capture the initial state of the process. It can be done
different instances of computation of different architecture’s
points are equal.

2. RELATED WORK

For homogeneous computing systems, Process state capture
and recovery mechanisms are well developed and can now
typically be performed with minimal overhead and latency;
less progress has been done in this functionality across
heterogeneous architectures.

The Tui System[2] constructed to provide a heterogeneous
migration tool that use on four common architectures in the
UNIX environment. In this system, the capture and recovery
of the state of a process is done in a highly machine dependent
manner, that requires complete knowledge of the fixed
conventions. Also, when a process state capture is requested, a
breakpoint instruction to trap to the capture mechanism is
placed at all “pre-emption points” i.e. the enabled points of
equivalence. These are available in the program to effect
capture initiation. In such approaches, on architectures with
varying instruction lengths, it is possible that the breakpoint
instruction placed at one pre-emption point overwrites the
instruction placed at another point or the current instruction.
To avoid this loss of correctness, it is necessary to fill space at
each pre-emption point and it should be enough to adjust the
breakpoint instruction. Therefore it is necessary to placing
dummy instructions, which introduce performance overhead
during normal execution of the program.

The process introspection model proposed by Ferrari the
portable[5] (or shadow-) check pointing model presented in
perform the activation history state’s capture in an machine-
independent manner by using the call-return functions
provided in the high-level programming language and it can
also done by the intermediate instruction set. Here, the
architectural differences are occurred it will be handling by the
compiler. However, they used a polling approach to process
state capture initiation. Poll points are created there, where the
process determines if a capture can be initiated or not. In such
an approach, a valuable amount of performance overhead
would be incurred during normal execution because the
continuous polling system is used.

In applications load balancing policies and logging mechanism
for fault tolerant systems, long latencies are not acceptable. In
the case of load balancing, e.g., the main purpose of migrate
the process one server to another server so that load will be
reduced on the system as soon as possible. For such
applications with a minimal latency requirement, almost all
potential points of equivalence present in the computation
must be effectively enabled. The polling approach would not
be suitable because the performance overhead due to

persistence polling at all such points would reach severely
unacceptable levels. There are several unacceptable levels.
Therefore, it is necessary to design new approaches.

A new poll free solution is given by P. Bungale[4] in which
they propose a poll-free solution that involves preserve
semantics self-modification of code. However, unlike the
other poll-free solutions, when a capture is requested it do not
place capture initiation instructions at all enabled points of
equivalence. Instead, it places the initiation instructions in a
copy of only a small portion of the code. Thus, it removes the
introduction of placeholder dummy instructions and thus it
increases the performance overhead.

The selection of the enabled subset from the entire set of
potential points of equivalence is to be done according to the
requirements of application and constraints. For example,

1) An application which desiring minimal latency can
effectively enable all potential points of equivalence that are
present in a computation and this work could not be done by a
polling approach, because of the high performance overhead
during normal execution.

2) In the case of high-performance computation applications,
only a subset of the potential points of equivalence would
have to be enabled in order to utilize the performance
enhancements achieved and especially within critical loops
and through machine-dependent optimizations across the
potential points of equivalence but they are non enable.

 One of the major advantages of this design is the modification
of program to incorporate state capture and recovery function.
It giving processes the ability to save and restore their states
automatically after they initiated. Some assumptions are also
taken in this approach,

1) The process is based on a program which can be written or
translated to an imperative, stack-based intermediate
representation to which transformations will be done by a
compiler and also possibly used a programmer.
2) The main element of this design is a table that mapped all
the enabled points of equivalence to the corresponding points
of object code. [4]

A new poll free solution is proposed by D. Ajmire [6], in this
by using the various assumptions are made and algorithms are
designed by using which process state initiation, capturing and
recovery is done.

Assumptions that are used in this design-

1. Compiler helps in obtaining the equivalence point table.

2. Operating system supports in generates the current value of
program counter for a process’s state initiation.

3. Machine dependent optimizations across enabled points of
equivalence shall not be allowed because they prevent the
different versions of the program’s compiled across
heterogeneous platforms.

Process Migration in Cloud Computing 27

Advances in Computer Science and Information Technology (ACSIT)
Print ISSN: 2393-9907; Online ISSN: 2393-9915; Volume 2, Number 9; April-June, 2015

a) State Capture Initiation Algorithm-When a request for a
process’s state capture is received from an external source, the
following steps are taken:

1. The current value of the process’s program counter is
obtained using operating system helps.

2. The program counter value is used to identify the current
executing function and the current segment of code between
two points of equivalence containing the current instruction.

3. The following steps are carried out for state capture
initiation on next point of equivalence:

b) State Capture Algorithm-Once the control transferred to
the state capture function, the following tasks are performed
initially:

1. Save the initiated point of equivalence and the interrupted
function of capture.

2. The new address of the current activation record is replaced
by the saving back copy of the interrupted function.

c) State Recovery Algorithm-Once a new process has been
created on the destination machine, the following steps are
taken into consideration to perform the process state recovery:

1. A jump instruction with destination as the corresponding
restoring back copy is placed at the entry point of each
function

2. When first activation record is created, the epilogue will
restore the static data from the checkpoint file.

3. The restoring epilogue performs the tasks.

4. Step 3 is repeated until all activations history have not been
restored.

5. The process finally resumes normal execution.

Once all the activations have been restored, the original
function entry points are restored and control is transferred to
the point of equivalence at which the state capture had been
initiated.

D.S. Miloji [7], proposed a Migration Algorithm to migrate
the process from one machine to another without state capture
but it uses forwarding references.

1. A migration request is send to a remote node after
negotiation, migration request has been accepted.

2. A process is apart from its main node by suspending its
current execution and temporarily redirecting communication
as described above.

3. Communication is temporarily redirected .This step
continues with steps 4, 5, and 6, as long as messages received.

4. The process state is extracted, by memory contents
processor state, communication state. The communication
state is system dependent. Local system’s internal state is not

transferable. The state of process is retained on the source
node until the migration is not complete but in some systems it
remains, after migration completes.

5. A destination process instance is created in which the
new state will be imported. Until a sufficient amount of state
has not been transferred from the source instance, destination
instance is not used. After sufficient amount of state has been
transferred, the destination instance will be promoted into a
regular process.

6. State is transferred to a new instance, all the states are
not transferred but some of the state can be brought even after
migration completion.

7. Means of forward references to the migrated process
should be maintained. It is also necessary to communicate
with the process and to control it. This step also uses
communication channels at the destination and redirected after
step 3.

8. New instance is resumed only when sufficient state has
been transferred. After this step, process migration completes.
When all of process state is transferred from the original node,
it can be deleted on the source node.

By N. Tzirita [8], a new approach is proposed in which
resource consumption can be minimizing by using process
migration.

Minimizing resource consumption using process
migration- pay-per-use model adopted in clouds, according to
this, how much resources an application running is used in
cloud computing environment, the greater the amount of
money will be charged to the owner of application. Therefore,
intelligent solutions must be used to minimize the resource
consumption. The problem which is common, to identifying
an assignment scheme between the interacting components
and the computing nodes of a cloud environment, to minimize
total amount of resources consumed by the application.
Various centralized solutions are found unsuitable for large-
scale applications. Therefore, a distributed algorithm is
important to assignment resources for minimum resource
consumption.

For minimizing resource consumption following methods are
used to solve:

(a) Centralized Solutions.

(b) Distributed Solutions.

(c) Migration Mechanisms.

a) Centralized Solutions-It includes:

i) Task allocation- Older works focused on solving the task
assignment problem over a dual processor system such as to
minimize the total communication cost.

ii) VM placement- There is also a significant number of works
in the literature related to energy consumption and VM

Pankajdeep Kaur and Anita Rani

Advances in Computer Science and Information Technology (ACSIT)
Print ISSN: 2393-9907; Online ISSN: 2393-9915; Volume 2, Number 9; April-June, 2015

28

consolidation. However, most of them do not take into account
the network overhead when deciding about the assignment of
VMs onto nodes (servers).

b) Distributed Solutions-Over the last few years, large-scale
distributed systems (e.g., clouds, grids, sensor networks, etc.)
have gained a lot of attention. Centralized solutions were
rendered useless due to scalability issues, and were finally
superseded by distributed ones.

c) Migration Mechanisms-In the following text, we mention
the most relevant works we found in the literature in regards to
the migration mechanisms that they are supported at different
levels:

i)Thread level.

ii)Process level.

iii)VM level.

Advantages-The advantages of using process migration are-

1. Efficiency-To providing efficient state capture and
recovery, the run-time performance overhead introduced by
the mechanism should be at acceptable levels. If checkpoints
are not performed in execution, then it will not run
significantly and slower without this service.

2. Generality- The mechanism is appropriate for a wide range
of architectures and a wide variety of programs ,written in a
multiple languages

3. Suitability for Minimal Latency-The state capture
mechanism should be suitable even for ensuring minimum
possible latency that is the time delay between when a capture
initiation is requested and when the capture is actually
initiated. This is the time taken to reach at the next possible
point of equivalence in the computation.

4. Ease of Use- This mechanism is fully automatic, requiring
little effort on the part of the application programmer. Such
full automation is only possible for programs that expressed in
a platform-independent manner. [6]

3. FUTURE SCOPE

The presented work is done in process migration perform the
scheduling and the allocation of the processes to the clouds.
Both in case of under load and overload conditions. But, in
case of over load condition, the process migration is
performed from one cloud to other.

The Future scope of the work is possible in the following
directions -

1) The presented work is defined the overload conditions in
terms of deadline as well as the memory limit of the clouds. In
future some other parameters can also be taken to decide the
migration condition.

2) The presented work is defined for the public cloud
environment, but in future, the work can be extended to
private and the hybrid cloud environment.

4. CONCLUSION

This paper describes an approach to process state capture and
recovery in heterogeneous computing systems that achieve
minimum performance overhead during normal execution of
the process. This presents being poll-free, is suitable even for
an application desiring minimal latency as it can afford to
effectively enable all points of equivalence presents. For
minimizing the resource consumption the solutions are used to
solve the problem. These approaches thus achieve the
minimum performance overhead during execution of process.
The presented work is about to perform the scheduling and the
allocation of the processes to the clouds in case of under load
and overload conditions. In case of over load condition, the
migration of the processes is performed from one cloud to
other.

REFERENCES

[1] Ms. Alankrita Aggarwal,”Comparative Review of Scheduling
and Migration Approaches in Cloud Computing Environment”,
2014 IJEBEA International Association of Scientific Innovation
and Research (IASIR)

[2] T.Velte and A.Velte and R.Elsenpeter, “Cloud Computing, A
Practical Approach, New York”, USA, McGraw-Hill, 2010.

[3] K. Sammy, R. Shengbing and Ch. Wilson, “Energy Efficient
Security Preserving Process Migration In Cloud Computing”,
International Journal of Computer Science Issues (IJCSI), March
2012

[4] Prashanth P. Bungale, Swaroop Shridhar. ”An Approach to
Heterogeneous Process State Capture and Recovery to Achive
Minimum Performance Overhead during Normal Execution.”
Proceeding of the International Parallel and Distributed
Processing Symposium(IPDPS’03)

[5] A.J. Ferrari, Stephen J. Chapin, and Andrew S.Grimshaw,
“Process Introspection: A Heterogeneous Checkpoint / Restart
Mechanism,” Department of Computer Science, University of
Virginia.

[6] D.Ajmire, M. Atique”Task migration in Cloud Computing”,
International Journal of Innovative Research and
Development,2013.

[7] D.S. Miloji, F.Douglis, Y. Paindaveine, TOG Research Institute,
EMC, and “University of Toronto and Platform Computing”.

[8] N. Tzirita, S.U. Khana, Thanasis Loukopoulos “On minimizing
resource consumption of cloud applications using process
migration” Journal of Parallel and Distributed Computing,2014.

[9] V. H Pardeshia,”Cloud Computing for Higher Education
Institutes: Architecture, Strategy and Recommendations for
Effective Adaptation”, Symbiosis Institute of Management
Studies Annual Research Conference,2014.

[10] L.Gkatzikis,” Efficient Task Migration Policies for Cloud
Computing Systems”, Education and Lifelong Learning, 2014.

